BARIX IPAM-400 OEM
SW SDK Documentation

SW Development Kit User Manual v1.10

Related IPAM-400 SW Development Kit Release: v1.05

Document Revision Table

Date Version |Who Change

12" March 2018 1.00 ASI First version

18" April 2018 1.01 ASI Added Yocto layer configuration and usage
information

20" April 2018 1.02 ASI Cleaned-up chapters 5 and 7

23" April 2018 1.03 ASI Minor fixes and removing irrelevant information

15" May 2018 1.04 ASI Added u-boot-tools and chrpath to the list of needed
Linux packages
Added instruction to remount the shadow partition as
RW

28" May 2018 1.05 ASI Added info about using OPKG

Fixed bits of incomplete information and some typos
Removed the command creating the rescue image

BARIXAG | |/

11 Jul 2018

1.06

ASI

Updated the OEM devkit version to 1.02

Fixed some typos

Updated section 7

Added info about burning the SD card outside the
Yocto environment

7" Sep 2018

1.07

ASI

Added section for manual FW image update usingthe
giba-update-client in rescue mode.
Fixed some types, and added couple of references.

25t Mar 2019

1.08

ASI

Updated for v1.05. New SIP Client cd features since
1.02:

Support for OPUS codec

“Auth user configuration field on the webUI
Added “autoanswer” configuration option
Support for MA400 HW type

17" Dec 2020

1.09

ASI

Added “Terms of Use” section

171 June 2021

1.10

MBA

Adapted to login changes in Bitbucket, changed
username.

TABLE OF CONTENTS

1 ABOUT BARIX SW DEVELOPMENT KIT

2 TERMS OF USE

1.1 PURPOSE OF THE DEVELOPMENT ENVIRONMENT

1.2 LICENSING

1.3 LIMITATION OF LIABILITY

3 CONFIGURING THE YOCTO LINUX DEVELOPMENT ENVIRONMENT

3.1 CONFIGURING YOUR LINUX DISTRIBUTION
3.2 INSTALLING THE YOCTO LAYERS OF THE BARIX SW DEVELOPMENT KIT

3.2.1 PREREQUISITES

BARIXAG | |/

3.2.2 BARIX OE-CORE SETUP......ovmrerreurerreemessesssessessesssessessessssssesssssseans 9
3.2.3 COMPILING IMAGES AND BURNING SD CARD ..cvveereurerreenrerrersnennes 10
3.2.4 DEPLOYING THE GENERATED IMAGES....ccoseurerreeresrerseeseens 10
3.2.4.1 Updating the SD card image from the Yocto environment 10
3.2.4.2 Updating the SD card without recompiling the complete Yocto environment. 10
3.2.4.3 Doing Web UPdatecoreermereesmsmseesmsmesessssesesssssessessanns 11
3.2.4.4 Updating the FW image manually in rescue mode 11
3.2.4.5 Deploying a binary using SCPccceenmeeeennnn. 12
3.2.4.6 Remote UPAate.....eereemseseessneseesssssessssesessssene 13
4 A DETAILED LOOK AT THE SIP DEMO APPLICATIONcccomnimsmmmsmssssmssssssnssssmssssssssssssssssssssssssssssssassenns 14
4.1 MODIFYING THE PJSIP PACKAGE ...cvuvureessssesesessssssessasssssssssssnsssssssnsasans 14
4.1.1 COMPILING PJSIP LIBRARY FOR THE NEEDS OF THE SIP DEMO APPLICATION 14
4.1.2 BARIX CUSTOM CHANGES OF THE PJSUA CLIENT woovverrrrreeeeesseeseseee 14
4.2 UNDERSTANDING THE SIP_DEMO PACKAGEcuttsssressassssasssssssssssssssnssssassssasssssnssssnssssassssasssssnssssnssssassssasssssnssnsns 14
4.2.1 THE WEBUI INTERFACE FILES....susstmsesressessessessssssesessssssesssssssssssssaseans 14
4.2.2 THE SIP CGI HANDLER ..ccsvtnseurerressessesssssesesssssessessssssessessssaens 16
4.2.3 THE UCI DEFAULT SETTINGS uvvtvetrsssrersessesressssssssessessssessessssssessssasesns 16
4.2.3.1 SIP Application defaults (application).....eernen 17
4.2.3.2 PJSUA default settings (Pjsua)ceereeeeesssene 17
5 USING THE SIP DEMO APPLICATION.....coimmmmmmmmmmsssssssmssassssssssnsssasssssnss 19
5.1 MAKING /RECEIVING CALL..ucsutstsssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssasssssssssssssansssssssssssssnssssss sassassnssssssssssnssnns 19
5.2 PLACING A CALL WITH DIGITAL INPUT w.uvtsussnssssessssssssssssssssssssssssnsssssssssassssssssssssssnsssssssssssssnssssssssssnssnsssssssassnssnss 19
5.3 TRIGGER THE RS232 RTS PIN WITH DTMF CODEcccotusmismmsmsessssssssmsssssssssssssmsssssssssssssssnsssssssssssssnssssssssssnsanss 19
5.4 UNDERSTANDING THE PJSUA CONFIGURATION FILE ...ceeuussssmssssesssssssssssssnssssssssssnssnssssssssssnssssssssssnssnsssssssssanssnss 19
5.4.1 THE “HIDDEN” SIP CLIENT TELNET INTERFACE ...oovvrvrvvssssssssssssssnnns 24
6 BARIX LINUX ECOSYSTEM....cciimmimsmsmmsisnnssmsssssssssssssssssssssssssssassssssssssssasssssssssssasssssssssssassssssssssssanass 29
6.1 SPI FLASH PARTITIONING wseessesssssssssssasssssssasssssssasssasssnsssnsssnsssnsssasssasssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssas 29
6.2 SD CARD LAYOUT cuuuesserssesssssssssssssssssssasssasssasssasssssssnsssasssssssasssnsssssssnsssnsssnsssnsssnsssssssnsssasssnsssnsssnsssnsssasssnsssasssasssas 30
6.3 SYSTEM V INIT c.uueiierisemssnmsssmsssmsssmssssssnsssnsssasssnsssnsssnsssssssssssnsssnsssnsssnsssnsssnsssnsssns snnssns snns ssns sns snsssnssnssnsssnsssnsssas 30
6.4 RUN LEVELS.ctuursssrsssssssrssasssnsssnsssnsssssssnsssssssnsssss sanssansssnssanssans sansssnssnns snasssnsssnsssasssas 31
6.5 CONFIGURATION RUN LEVEL tuttsutssrsssassssssssssssassssssssssssssssssssnssssssssssssassansss 32
6.6 CONFIGURATION FRAMEWORK ..etssurssesssssssasssssssssssssssnsssnsssasssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssns snnsssnsssnsssnsssas 32
6.6.1 CONFIGURATION MANAGER ...covvrrrrnermersserssssssssssssssssssssssssssssssssssssans 32
6.6.2 CONFIGURATION FRAMEWORK IMPLEMENTATION 33
6.6.3 CONFIGURATION DATABASE.....cosomseuersersersssssssssssssssssssssssssssssssssssans 33
6.6.3.1 FOlder StTUCTUTEovverererrsssssssssssessssssssssssssssenns 33
6.6.3.2 UCI internal configuration file format.........onecennnn. 34
6.6.3.3 Current device configuration ... 35
6.6.3.4 Default configuration.....eeeeeesssnseesssesesssssesseens 35
6.6.3.5 Runtime configuration......eeessssesssseesenns 35
6.6.4 INTERFACES ..cueuuernmesesssesssess 35
6.6.4.1 BINATIES.ccuierrreersssssesssssesses 35
6.6.4.2 UCI command line interface.......mmn 36
6.6.4.3 WEB Ul INtegration......eeeeeeseesssesssessesssssessenes 36
6.6.4.4 Automatic system service restartingeeeens 38
6.6.4.5 UCI services dependency Systemoeeeeenns 38
6.6.4.6 Configuration files for system components 40

BARIXAG | |/

6.7 WEB INTERFACE 1etittussrsssrssssssssssssssssssassassssns snasssnsssssssssssas 44

6.7.1 FUNCTIONS.cemirrrssssssmmssses 45
6.7.2 WEB INTERFACE COMPONENTS ...cuvetremerresssessessessessesssssessessesssessesssssens 45
6.7.2.1 WED SEIVET oveerureermreseesssesesssssessssssssesessssesssssaeee 45
6.7.2.2 CGI and dynamic page content.......e 45
6.7.2.3 Web Configuration......eereessesesssmesessssessessanns 45
6.7.3 WEB FOLDERS.....coosmmismmnssns 45
6.7.3.1 Web server fOlders ... meesssessesessseee 45
6.7.3.2 Web content StrUCLUTE. ... reeesereesssesesssssesesssesesssssessessanns 46
6.7.3.3 Application sSpecific filesreenreemmesesseseesssesenns 46
6.7.3.4 CGI SCIIPES courrereeerrreersseeersessssssssssessssssssssssssssssssssesessssssssssssssesssanesens 47
6.7.3.5 CGI fUNCHIONS covuvreermereerssseseesssesesssssssessssesesssssessesss 47
7\ LY 08 20 18 s 0 0 0 51
7.1 CONNECTING SERIAL TERMINAL....cutessesessssessasessssssssnssssassssassssssssssnssssnssssassssassssssssssnssssnssssassssasssssnssssnssssasnssannsss 51
7.2 USEFUL YOCTO COMMANDSuuttesssrssssssssssssssssssssssssnssssassssasssssssssssssssnssssassssassssssssssnssssns sasasnssanssssnssssnssssasnssannsss 52
7.2.1 RECOMPILING SPECIFIC PACKAGE ...cvvvrerrerreesressessnesens 52
7.2.2 CLEANING A PACKAGE ..oeuvvtverrerrerrssssessssssssssssssssssssssssssssssssssasens 52
7.2.3 GENERATE COMPILING TOOL CHAINovveveererrernessessnsaens 52
7.3 DEVELOPMENT ENVIRONMENT CREDENTIALS ...ceeeouressasesssssssssssssnssssassssassssasssssnssssnssssassssassssanssssnssssnssssassssannsss 53
7.3.1 DEVICE SSH CREDENTIALS wcovvetreetsnesssessmesssesssssssessssssssssssssssssssssssens 53
7.3.1.1 Changing the device password........ 53
7.3.1.2 Changing the default root password in the build 53
7.3.2 BITBUCKET CREDENTIALS ...vevvurersersesssessssssssssssssessssssssssssssssssesans 54
7.3.3 ADDING PACKAGE MANAGER TO THE GENERATED IMAGE 54
7.3.3.1 Configuring the Yocto environment to include the OPKG manager 54
7.3.3.2 Setting a server with the generated package feeds 55
7.3.3.3 Configuring the device to use the package feeds 55
7.4 LISTING ALL FACTORY DEFAULTS 1utttsussssssssssnsssssssssnssssassssassssssssssssssssssssassssasssssssssssssasas sasassssasssssnssasassssansssasssss 56
7.4.1 CHECKING ALL DEFAULTS FILES IN THE /BARIX/CONFIG/DEFAULTS/ FOLDER OF THE DEVICE....coouccumeessmeessrnserns 56
7.4.2 LISTING ALL DEFAULTS WITH UCI COMMAND......oecorerrerneesessesnenne 58
8 TIPS, KNOWN ISSUES AND WORK IN PROGRESSccosnmmmmmmmmmmmmssssssssssssssssssssss 61
8.1 “RELAY” CONTROL VIA THE RTS PIN OF THE SERIAL PORT ...coununmmmnmsmninsnsnsssasasssssnss 61
8.2 SIP REBROADCAST APPLICATION uuuttisassssssssssnsssssssssssssssssssssssssassssasssssssssssssasas sasassssassssssssassssasassssanssssnssssassasans 61
8.3 YOCTO GENERATED EXTERNAL TOOLCHAIN .uucttssasessasssssnssssnssssassssasssssssssssssssassssassssassssssssssassssassssanssssnssssassasanes 61
9 LINKS, REFERENCES AND USED DOCUMENT SOURCESccommmmmmmmmsmsmmsmmsmsmsssssssssssssssssssssssssns 63
10 LEGAL INFORMATIONccttstsmssssmsssssmsssassssesssssssasssssssssssassssnssnsssassssenens 64

BARIXAG | |/

BARIXAG | |/

1 About Barix SW Development Kit

The Barix SW Development kit allows Barix OEM customers to develop their own applications for the Barix
IPAM-400 platform. The Barix OEM SDK kit is delivered as a bunch of BitBucket repositories, containing the
necessary Yocto layers to be added to the standard Yocto environment. Only authorized Barix OEM users
have access to these repos. If you are interested to develop your products based on the Barix IPAM-400
platform, please contact Barix Customer support.

The Barix OEM SDK kit uses Yocto Linux as a development environment and is created in a way to keep the
customized scripts and packages in additional layers, which reduces the need to change the Yocto Linux
system files to the minimum. For this purpose it includes scripts and configuration files to integrate it in the
Yocto environment, and as well as Barix specific packages and configuration scripts that do create the Barix
specific ecosystem on the target device.

The current release of the SW Development kit is optimized to run on a Barix Annuncicom 60 motherboard
with IPAM-400 module installed, but could be easily adapted to any OEM board design.

For better understanding this manual, a good knowledge of Yocto Linux and the Kconfig framework is
required, so please refer to the Yocto Reference Manual first before reading the rest of this document.

Barix recommends using Ubuntu Linux 16.04 for best development results.

BARIXAG | |/

https://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html

2 Terms of Use

1.1 Purpose of the development environment

The only use allowed for this development environment is for developing firmware for the Barix IPAM400
module.

1.2 Licensing

1. You are responsible for assuring that you have licenses and permission to use the firmware
components included as well as added by you for your products. (For example the license to use
AAC+ support or other components that require licensing)

2. ltisin your responsibility to evaluate what functionality that you implement requires licensing und to
assure you have permission to use it.

3. The IPAM400 Evaluation kit is licensed for AAC+ (simple player). IPAM400 modules bought from
Barix or its partners are NOT licensed for any firmware component such as AAC+.

4. Before installing your firmware on Barix IPAM400 modules, you need to assure that you have
registered and paid for all the required licenses. (e.g. should you use simple player you have to
register with www.via-corp.com and pay the required licenses. This extends to all components used
in your development that requires licensing.

1.3 Limitation of Liability

1. Neither Party shall be liable to the other Party for any special, direct, indirect or consequential loss or
damages, including lost profits or costs of procurement of substitute goods.

In any case, the loss or damage is limited to the Purchase Price of the respective failing Device.
This limitation of liability shall not apply if the respective loss or damage is caused by fraud or intent.

1.4 Barix Terms & Conditions

This software also applies under the general Barix Terms & Conditions at: https://www.barix.com/i/terms-
conditions/

You acknowledge that it will not acquire any intellectual property rights under this Agreement in the Devices,
Firmware, Software or other products or associated materials of the other Party, and that all rights herein are
strictly reserved.

Barix AG, Zlrich

25.4.2020

BARIXAG | |/

https://www.barix.com/i/terms-conditions/
https://www.barix.com/i/terms-conditions/

3 Configuring the Yocto Linux Development Environment

Contact Barix Support to receive a Virtual Development environment that is ready to go.

This chapter explains how to install Yocto Linux on UBUNTU 16.04 and lists all the required packages that
need to be installed in order the installation to be successful.

Barix supports Ubuntu, and the example commands below are tested on Ubuntu 16.04. While the
Development kit may run on any Linux distribution, they are not tested by Barix and you may need to find the
way to install the required packages on your own.

A Virtual Box Appliance with everything already installed and preconfigured is also under development.
Please contact Barix Customer Support for indications how to get it.

3.1 Configuring your Linux distribution

a) First install the Ubuntu compile tools

sudo apt-get install build-essential

b) Next, add i386 architecture libraries and update the package DB:

sudo dpkg —--add-architecture 1386
sudo apt-get update
sudo apt-get install 1ibc6:1386 libncursesb5:1386 libstdc++6:1386

c) Last, install the packages recommended (and required) by Yocto for essential development
on a headless work station:

sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
chrpath socat u-boot-tools chrpath python-minimal libssl-dev

Now your Linux system is ready to install and compile the Development Kit with Yocto

3.2 Installing the Yocto layers of the Barix SW Development Kit

3.2.1 Prerequisites
In order to be able to fetch the IPAM-400 SDK, you need:

A) A Linux Build PC, preferably local, not remotely hosted because the script creating SD card requires
physicl access to the SD card interface;

B) Read access to the following BitBucket repos (see chapter 49 for the BitBucket credentials):

e (giba-oem_bsp-platform: This repository contains the manifest files needed by the repo tool to
initialize the Yocto configuration for compiling the Barix SDK image.

e meta-barix-sdk: This repo contains the SIP Demo application, and the binary and include files of
some Barix libraries, needed for the SIP demo application to run. The sources of the SIP Demo
application are provided as a tarball, with the needed fixes to run on the IPAM-400. If you need the
sources directly from the relevant GIT repo, you need access to barix_oem_sample_apps (see
below)

e meta-qiba: This repo provides support for the Allwinner Linux modules used by Barix / Qibixx
(kernel, devicetree, system utilities, FW updater backend, etc). It contains also some tools for
manipulating the factory-info partition, generate web update image out of the generated by Yocto
system image, and a SD-card burner tool.

BARIXAG | |/

C) Optional read access to the following repos (see chapter 49 for the BitBucket credentials):

e Barix_oem_sample_apps: This repo contains the sources of some demo applications:

1. pjsua: Barix modified PISUA client with added button handling, status reporting, and DTMF
relay control.

2. simple player: A simple application using the Barix proprietary Player library that plays a stream
from URL

3. sip_cgi: A CGlI command handler backend to receive commands from the webUI, and pass
them over to the modified pjsua SIP client.

3.2.2 Barix oe-core Setup
Once you got the user name and password from Barix Support, perform the following steps:

1. Install the repo bootstrap binary in your home folder:

mkdir ~/bin
PATH=~/bin:SPATH

curl http://commondatastorage.googleapis.com/git-repo-downloads/repo >
~/bin/repo

chmod a+x ~/bin/repo

2. Setup the repository credentials for ipam400-oem bitbucket account:

git config --global user.name "ipam400-oem"
git config --global user.email "ipam400-oem@barix.com"

git config --global credential.helper cache

3. Create a directory for your oe-core setup to live in and clone the meta information. During the
following steps the user is prompted for the ipam400-oem Bitbucket credentials.

mkdir oe-core
cd oe-core

repo init -u https://bitbucket.org/kibix/giba-ocem-bsp-platform -b master -m
barix-sdk-v1.05.xml

repo sync

NOTE: While you can use the develop (barix-sdk-develop.xml), or the master (barix-sdk-master.xml)
manifest files, Barix recommends that you use the manifest for the latest officially released version of the
SDK (v1.05 as of the time of writing this document). It guarantees that the dependency layers are being
checked out with the same SHAL hash tags as of the release date, and not taking the master/develop HEAD
which might have changed in the meantime.

4. Source the export script to setup the environment. On first invocation this also copies a sample
configuration to build/conf/*.conf.

source export

With this your Yocto build environment is properly setup, all the sorces fetched, and you can start building
images

3.2.3 Compiling images and burning SD card

BARIXAG | |/

https://bitbucket.org/kibix/qiba-oem-bsp-platform

1 To compile the Barix SDK image, type the following command line from the build folder:

| bitbake core-image-barix-sdk

All output images for the specified MACHINE (barix-ipam400 in our case) are located in:

| ./tmp-glibc/deploy/images/barix—ipam400/

2 To burn the SD card (dev/sdb in the examples below) with the generated core-image-barix-sdk use the
"create-giba-sd.sh" script located in "stuff/meta-giba/tools” folder. For example:

‘ sudo ./create-giba-sd.sh barix-ipam400 core-image-barix-sdk /dev/sdb

In the above case the U-Boot is not added to the SD-Card. To program the SD card with the U-Boot use:

‘ sudo ./create-giba-sd.sh barix-ipam400 core-image-barix-sdk /dev/sdb y

3 To create an image, that can be uploaded via web update, run the command:

| . /create-giba-update.sh —--machine=barix-ipam400 --root=core-image-barix-sdk

3.2.4 Deploying the generated images

Barix supports several methods for uploading images to the target. For the purpose of this manual we can
use 2 methods: webUI update, and SD card update.

Separate binaries and/or files can be also transferred diretly on a booted device using SCP.

3.2.4.1 Updating the SD card image from the Yocto environment
This is the easiest and the preferred way to run the newly generated image. It has the following advantages:
o Works always-if for any reason the u-boot and/or the rescue image in the flash are broken, the
device will successfully boot off the SD card (assuming that the u-boot has been added to the image
as described above)
e Saves time and effort-the SD card is prepared in less than 2 min
e This is the only way to setup initially your image
The disadvantage of this method is that you will lose the data in the data partition if you reuse the same SD
card.

To burn the SD card, just follow the steps above, insert the SD card in the IPAM-400 module, plug it back in
its socket, then power on the device.

3.2.4.2 Updating the SD card without recompiling the complete Yocto environment.
Starting from v1.02, Barix distibites the following images:

File name Description

core-image-barix-sdk-barix-ipam400.tar.gz The image to be burned in the root partition of the
SD card

u-boot-sunxi-with-spl.bin-barix-ipam400 Bootloader to be stored in the boot partition of the
SD card

giba-update-core-image-barix-sdk-barix-ipam400- The timestamped webupdate file

XXXXXXXXX.tar

create-qiba-sd-extern.sh Script to create the SD card

If all you want is to give the current version of the SDK kit a try without all the hastle of recompiling the
complete Yocto environment from scratch, then copy all these files in a folder on your Linux PC, and just run
the provided create-giba-sd-extern.sh file like this:

‘ sudo ./create-qgiba-sd-extern.sh barix-ipam400 core-image-barix-sdk /dev/sdc y

BARIXAG | |/

3.2.4.3 Doing web update

In order to be able to use the Web Update, we need to have the device preloaded with an image that
provides the minimal webUI to allow flashing the FW. Beware that empty devices (i.e devices without SD
card image, that have only the rescue image burned in the flash) do not have this functionality. To ensure
this functionality, the needed binaries and scripts are already included in the meta-giba Yocto layer.

To upload a new image, just open your browser to the URL:
http://192.168.11.166/uifloader.html
replacing the IP address with your device/board IP address, then follow the instructions on the screen.

The device will transfer the rootfs on the SD card, leaving the data partition intact, and will reboot
automatically when the update is finished

3.2.4.4 Updating the FW image manually in rescue mode

In some cases the developers may want to have a quick update without all the hastle of compiling the whole
Yocto environment and/or burning the SD card, by using directly the provided update images. In this case,
performing webUI update is the easiest way to go.

Unfortunately, the webUI update option is available only if we have previously burned an SD card, which has
the webUI update scripts available.

If the IPAM-400 module has no SD card with valid Yocto image, then it will boot from the flash the rescue
image. Due to the limited flash memory, the rescue image has limited humber of utilities preinstalled, one of
which is the giba-update-client, which ensures the remote update functionality.

So, in order to update the SD card, do the following steps:

1. Plugin an empty SD card into the IPAM-400 module, connect the device to the network via a LAN
cable, and power it on.

2. The device will boot in rescue mode. You can use the serial console, connected to the debugging
serial port as explained in the Connecting serial terminal chapter, to observe the boot messages.

3. Once the device boots, you can login with user root, and no password, then get the IP address of the
device:

root@barix-ipam400:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:08:E1:06:A4:FB
inet addr:192.168.11.135 Bcast:192.168.11.255 Mask:255.255.255.0
ineté6 addr: fe80::208:elff:fel6:a4fb%lo/64 Scope:Link
ineté addr: fd5d:12c9:2201:1:208:elff:fe06:a4fb%1/64 Scope:Global
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:8579 errors:0 dropped:34 overruns:0 frame:0
TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:905071 (883.8 KiB) TX bytes:1286 (1.2 KiB)

4. Go in the folder of your PC where you have stored your web update image, and copy it over to the
device using scp, for example:

scp giba-update-core-image-barix-sdk-barix-ipam400-20180706124013. tar
root@192.168.11.135:/tmp

5. Back in the device terminal, start the giba-update-client manually:

BARIXAG | |/

http://192.168.11.166/uifloader.html

root@barix-ipam400:~# giba-update-client -f /tmp/qiba-update-core-image-barix-sd
k-barix-ipam400-20180706124013.tar

The device will reformat the SD card, will create all the needed partitions, copy the image to it, and then
reboot with the new image

3.2.4.5 Deploying a binary using SCP
The easiest, and the quickest way to test a newly copiled binary or script, is to copy it directly on to a working
device and run it from there.

To do that, locate the binary you want to copy, and the desired destination, then use the SCP command. For
example, to copy the barix-pjsua binary (assuming we are in the Yocto build folder), we do:

1. Login to the device (ether by serial terminal, or ssh). For example, using SSH:

S ssh root@192.168.11.218
root@192.168.11.218"'s password:

2. Type “oem devkit 17”for password. Next, you need to stop the running application:

root@barix-ipam400:~# /etc/init.d/pjsua stop
root@barix-ipam400: ~#

3. From your Linux development PC, copy the new binary:

scp tmp-glibc/work/cortexa’hf-neon-vfpv4-oe-linux-gnueabi/pjsua/local-r0/barix-
pjsua root@192.168.11.218:/usr/bin/

root@192.168.11.218"'s password:

barix-pjsua
100% 7948KB 7.8MB/s 00:01

alex@kubuntu-vm:~/oe—-core/builds

4. Last, restart again the application:

root@barix-ipam400:~# /etc/init.d/pjsua start

3.2.4.6 Remote update

The Barix rescue image is built with a remote update client in it. If the boot from the SD card fails, the device
will attempt to load the rescue image from the flash. If you have the serial port connected, you will be able to
see the console prompt. You can enter into rescue image also if you keep pressed the reset button while
powering on the device.

The remote update may not, or may not be activated on the rescue image at production time. If the
/mnt/shadow/update servers. txt file exists, and contains download URL, the device will try to fetch
the new image from that address.

NOTEL: Be aware that during this process the SD card will be completely erased, formatted, and the image
burned to it. If you have any data on it, they will be lost.

NOTEZ2: The shadow partition might be mounted read only. If this is the case, use the following command to
mount it for read/write in order to change the update_servers.txt:

mount -o rw,remount /mnt/shadow

BARIXAG | |/

4 A detailed look at the SIP DEMO application

In this we will discuss the SIP Demo application. We will go through the process of creating/understanding
the application start script, and the automatic configuration generation of the pjsua.conf file. So, in fact we
have:

e A SIP client, based on the PJSUA library
o A wrapper application to interact with the webUI and the SIP client (sip_cgi)
So, let’s start reviewing all components one by one

4.1 Modifying the PJSIP package

Barix has made changes to the PJSIP and PJSUA libraries in order to add some hooks in to the source code
to be able to get status information from the application and send some commands to it. These changes
have been split in two parts:

4.1.1 Compiling PJSIP Library for the needs of the SIP demo application

The recipe of the PJSIP package is located in meta-barix-sdk/recipes-external/pjsip folder. The
recipe compiles also the standard pjsip client binaries, but since we are only interested using the colpiled
library, we are not copying them on the device.

4.1.2 Barix custom changes of the PJSUA client

In order to be able to communicate with the CGI backend (sip_cgi) that reads the PJSIP status and sends it
to the webUI, and receives some commands form the web page, Barix has modified a bit the PISUA client
provided with the PJSIP library by adding an UDP socket class, that is used to communicate with the CGI
backend. The source code of the modified PJSUA client is provided as tarball file, located in the meta-
barix-sdk/recipes-apps/sip-demo/pjsua folder. Ifthe pjsua git.bb recipe is used intead of the
default pjsua Iocal.bb, then the source will be fetched from the barix oem demo apps repository on
BitBucket.

The source code si compiled, then links it against the PJSIP library that is already preinstalled in the Yocto
staging directory. The resulting barix pjsua binary is then copied in the /usr/local/bin folder on the
target image.

4.2 Understanding the sip_demo package
The sip demo package has been created with the following functionality:
e The main application that will be executed at device startup

e Compile and install the demo applications and helpers — PJSUA based SIP client and SIP-CGI
agent/backend

o Install all the relevant configuration templates and the webUI files
Below we explain shortly about each component:

4.2.1 The webUl interface files

The webUI files are available as a tarball in the files section of the meta-barix-sdk/recipes-
apps/sip-demo/sip-demo-web-ui/ recipe.

Ince decompressed, you can find the CGI scripts, that generate dynamic HTML content on demand when
processed by the haserl script, located in the cgi-bin folder.

The frame files (named uif*. html) and the help pages (hamed uih*. htmI) are in the main webUI folder.
The only exception is uifhome, which has been modified to load the home page of the currently active demo
application. To do this, it is renamed to .cgi and moved to the cg-bin folder. The code is pretty simple to

BARIXAG | |/

https://ipam390_oem@bitbucket.org/barixag/barix_oem_sample_apps.git
https://ipam390_oem@bitbucket.org/barixag/barix_oem_sample_apps.git

understand and is a good example to follow:

<

oe

function get home page {
homepage=$5 (/sbin/uci get -gq application.main config.active app)
echo -n "/cgi-bin/"
echo -n "Shomepage"

echo -n " uihome.cgi"

function get help page f{
helppage=s5 (/sbin/uci get -g application.main config.active app)
echo -n "/Shelppage"
echo -n " help.html"

echo -n '

<html>

<frameset id="uifhome" cols="650,350,*" frameborder=no border=0>
<frame src='

get home page

echo -n ' noresize name="m" marginwidth=0 marginheight=0>
<frame src='

get help page

echo ' noresize marginwidth=0 marginheight=0>

</frameset><noframes>Please use a frame enabled browser</noframes>

</html>"

oo

>

The tags “<%” and “2>"instruct the lighthttpd server to ignore everything enclosed between them, and pass it
to the haserl binary. The enclosed code is executed like a bash script, and the echo —n ‘... * statements
generate the real HTML content. The frame source link is generated by calling the get_home_page() and
get_help_page() functions that properly detect the active application, and redirect to the correct cgi home

and help pages. Below you find a list of the dynamic web pages in the cgi-bin folder:

File Name Purpose

command.cgi A CGI script to provide status of the Simple Player to the webUI, and receive

adapted for another projects.

some commands from it. Shows how the POST parameters are being fetched
and parsed, and can be easily extended by adding other commands, or easily

config.cgi A CGl script that is being called when the user clicks on the Submit button to

send a POST request. This script then takes care to apply the settings, and
display the right message when the IP settings do change. Please do not
modify this script unless you get deep understanding about the Barix Linux

BARIXAG | |/

Ecosystem, just use it as it is.

download_applog .cgi A CGil script to download /var/log/messages, including the logrotated gzipped
files too

download_weblog.cgi A script to download the lighttpd log files

format.cgi A script to format the SD card. It is started by a button on the DEFAULTS menu
ta

menu.cgi A script implementing the navigation menu of the home page

pjsua_uihome.cgi SIP client home page. Shows the status of the SIP client and allows sending
commands to it

Sip.cgi This is the sip_cgi application from the sip_demo package that provides the
status of the PISUA client, and sends commands to it.

uidefaults.cgi Factory defaults page implementation

uilogs.cgi Logs web page

uinetwork.cgi The SIP applications and system settings page

uireboot.cgi A script implementing the Reboot page

uistatus.cgi A script implementing the Status page

4.2.2 The SIP CGI handler

The SIP CGI handler is the “man-in-the-middle” between the webUI, and the modified PJSUA application. It
is an example use the CUdpSocket class from the Barix proprietary utility lib. When the browser sends
requestto cgi-bin/sip.cgi, the 1ighttpd executes it, passing the request parameters to it. The SIP
CGlI agent then forwards the request to UDP port 5555, where the barix-pjsua is listening for commands. The
source code can be found in the files section of the barix-sdk/recipes-apps/sip-demo/sip-demo-
config recipe.

4.2.3 The UCI default settings
The default settings and configuration templates are provided as a tarball in the files section of the meta-
barix-sdk/recipes-apps/sip-demo/sip-demo-config/recipe. It contains not only SIP deno

configuration files, but also the UCI configuration files of the depending services. All of them can be found in
the barix/config/defaults/ once the tarball is decompressed.

Below we list only the options in the files of our interest:

4.2.3.1 SIP Application defaults (application)
Contains settings that are common for all SIP Demo applications:

Option name and default value Purpose

application.main_config.active_app=pjsua Defines which one of the SIP demo apps to be
started at boot. Currently selects between “SIP
Client” and “Simple Player”

application.audio.amplifier=on Switches ON/OFF the amplifier (Speaker OUT)
application.audio.mic_linein=mic Switches between Mic/Line In input
application.audio.volume=50 Sets the default volume in %
application.audio.mic_gain Sets the Microphone gain in dB
application.audio.mic_boost Switches ON/OFF the microphone boost
application.audio.ad_gain Sets the AD gain in dB

application.audio.silence _playback

BARIXAG | |/

4.2.3.2 PJSUA default settings (pjsua)
Contains pjsua specific defaults:

package 'pjsua'

config section 'sip account'

option registrar 'change me.server.com'

option username
option password

option reg to

config section 'aec'
option no_ vad
option ec tail

option ec opt

config section 'misc'
option autoanswer 'n'
option cmd port
option capture lat
option playback lat
option quick dial num

option dtmf pattern

'change me'
'change me'

"'600"'

'y'
250"
"disabled'

152221
'100'

'100'
'change me'

'1234"

BARIXAG | |/

5 Using the SIP Demo Application

5.1 Making/Receiving Call

After to have set your own SIP credentials on Settings page, to place calls put on home page
extension@server after sip: and press the DIAL button.

e.g.

200@192.168.0.243 or 200@myserver.com

To answer a call, press the button “ANSWER”, and to close a call-press the button “HANGUP”.

5.2 Placing a Call with digital input

To place a call with digital input, shorten the INO contacts on rear connector. A call to the preset Call On
Input ID will be started.

5.3 Trigger the RS232 RTS pin with DTMF codel

The Annuncicom 60 does not have a digital, or relay output. However it is possible to toggle the RTS pin
(RTS is pin 7, GND is pin 5; see picture below) of the RS232 port using DTMF code. Configure the trigger
code in the DTMF Pattern field (5 digits maximum) on the web Ul. The RTS output will be unconditionally set
to “Off” when the call is closed

RS232 Pinout (9 Pin Male)

(O\ i }o]

The state of the pin is reported on home page (green/active, +6V; gray/not active, -6V).

5.4 Understanding the PIJSUA configuration file

To add/change the configuration parameters not accessible via WEB interface, it's possible to edit the pjsua
filein /barix/config/templates/templates/.

#

PJSUA config options coming from the template

To modify them edit the /barix/config/templates/templates/pjsua file
for more PJSUA config options check the PJSIP documentation:

http://www.pjsip.org/pjsua.htm#reference

#

! This option is not yet functional-portingthis feature form IPAM-390 to the new IPAM-400 is still in progress.

BARIXAG | |/

Optional features. Uncomment 1if needed
#--log-file=/var/log/pjsua.log
#-—-log-level=5

#--app-log-level=5

#--log-append

#--dis-codec=g711

#-—auto-loop

#--—auto-rec

Barix custom default settings:

Disable console. It must be disabled or we could not run it as a
service in background

--no-cli-console

-—use-cli

—--cli-telnet-port=52221

disable TCP. Uncomment if TCP/TLS is required

—-—-no-tcp

Use the default soundcard. Change it here if you are using another

(ex. USB sound card)

Note 1: PJSIP device numbering starts from 1 (0 means "use default"),
ALSA-from 0! (ex. USB card would be 2, in ALSA 1)

Note 2: For USB cards to work the kernel needs be compiled with

USB soundcard support!

—--playback-dev=0

—-—capture-dev=0

Use the standard RTP port

—-—rtp-port=5004

use any realm

—-—-realm=*

limit the calls to 1 only

——-max-calls=1

To have the new configuration running, the pjsua application must be restarted with the command:

/etc/init.d/pjsua restart

BARIXAG | |/

For example, to add audio loop (the incoming audio from remote peer is looped internally and sent back) and
auto-answer functions, append:

loop audio

-—auto-loop

NOTE 1: For testing/debugging purpose it's useful to start with auto-loop configured; if the audio loop works
properly, but in normal call there is not incoming/outgoing audio, the cause could be an improper audio
parameters configuration (see also section 8.4, Using the ALSA mixer) or an incorrect wiring.

See below the complete list of pjsua configuration options.

Usage:

pjsua [options] [SIP URL to call]

General options:
—-—config-file=file
-—-help

—--version

Logging options:
—-—-log-file=fname
—-—-log-level=N
—-—app-log-level=N
—-—-log-append

-—-color
—--no-color
—--light-bg

--no-stderr

SIP Account options:
--registrar=url
—-—-id=url
--realm=string
--username=string
--password=string
--contact=url

—-—contact-params=S

Read the config/arguments from file.
Display this help screen

Display version info

Log to filename (default stderr)
Set log max level to N (0 (none) to 6 (trace)) (default=5)
Set log max level for stdout display (default=4)

Append instead of overwrite existing log file.

Use colorful logging (default yes on Win32)
Disable colorful logging
Use dark colors for light background (default is dark bg)

Disable stderr

Set
Set
Set
Set
Set

the URL of registrar server

the URL of local ID (used in From header)
realm

authentication username

authentication password

Optionally override the Contact information

Append the specified parameters S in Contact header

-—-contact-uri-params=S Append the specified parameters S in Contact URI

—-—-proxy=url

Optional URL of proxy server to visit

BARIXAG | |/

--reg-timeout=SEC
—--rereg-delay=SEC

—-—reg-use-proxy=N

—-—-publish
——mwi
--use-ims

——use-srtp=N

—--srtp-secure=N
--use-100rel

—-—use-timer=N

—-—timer-se=N
—-—timer-min-se=N
--outb-rid=string

—-—auto-update—-nat=N

—-—disable-stun

—-—-next-cred

SIP Account Control:

—-—next-account

Transport Options:

—-—-set-qgos

—-—local-port=port

—-—ip-addr=IP

—-—bound-addr=IP

==MO=LEECE

——no-udp

——nameserver=NS

-—outbound=url

—--stun-srv=FORMAT

May be specified multiple times

Optional registration interval (default 300)

Optional auto retry registration interval (default 300)
Control the use of proxy settings in REGISTER.

O=no proxy, Il=outbound only, Z2=acc only, 3=all (default)
Send presence PUBLISH for this account

Subscribe to message summary/waiting indication

Enable 3GPP/IMS related settings on this account

Use SRTP? (O:disabled, 1:optional, Z2:mandatory,
3:optional by duplicating media offer (def:0)

SRTP require secure SIP? 0O:no, 1:tls, 2:sips (def:1)
Require reliable provisional response (100rel)

Use SIP session timers? (default=1)

O:inactive, l:optional, Z2:mandatory, 3:always

Session timers expiration period, in secs (def:1800)
Session timers minimum expiration period, in secs (def:90)
Set SIP outbound reg-id (default:1)

Where N is 0 or 1 to enable/disable SIP traversal behind
symmetric NAT (default 1)

Disable STUN for this account

Add another credentials

Add more account

Enable QoS tagging for SIP and media.

Set TCP/UDP port. This implicitly enables both

TCP and UDP transports on the specified port, unless
if TCP or UDP is disabled.

Use the specifed address as SIP and RTP addresses.
(Hint: the IP may be the public IP of the NAT/router)
Bind transports to this IP interface

Disable TCP transport.

Disable UDP transport.

Add the specified nameserver to enable SRV resolution
This option can be specified multiple times.

Set the URL of global outbound proxy server

May be specified multiple times

Set STUN server host or domain. This option may be

BARIXAG | |/

Audio Options:
—-—add-codec=name
—-—-dis-codec=name

—-—-clock-rate=N

—--snd-clock-rate=N

-—-stereo
-—-null-audio

--play-file=file

—-—-play-tone=FORMAT

—-—auto-play
—-—auto-loop
—-—auto-conf
—-—rec-file=file
—-—auto-rec
-—quality=N
—-—ptime=MSEC
—-—-no-vad
-—-ec-tail=MSEC

——ec-opt=0PT

--1lbc-mode=MODE
—-—capture-dev=id
--playback-dev=id
—-—capture-lat=N
--playback-lat=N

--snd-auto-close=N

--no-tones
-—-jb-max-size

-—extra-audio

specified more than once. FORMAT is hostdom|[:PORT]

Manually add codec (default is to enable all)
Disable codec (can be specified multiple times)
Override conference bridge clock rate
Override sound device clock rate
Audio device and conference bridge opened in stereo mode
Use NULL audio device
Register WAV file in conference bridge.
This can be specified multiple times.
Register tone to the conference bridge.
FORMAT is 'F1,F2,0N,OFF', where F1,F2 are
frequencies, and ON,OFF=on/off duration in msec.
This can be specified multiple times.
Automatically play the file (to incoming calls only)
Automatically loop incoming RTP to outgoing RTP
Automatically put calls in conference with others
Open file recorder (extension can be .wav or .mp3
Automatically record conversation
Specify media quality (0-10, default=6)
Override codec ptime to MSEC (default=specific)
Disable VAD/silence detector (default=vad enabled)
Set echo canceller tail length (default=256)
Select echo canceller algorithm (O=default,

l=speex, Z2=suppressor)
Set 1LBC codec mode (20 or 30, default is 30)
Audio capture device ID (default=-1)
Audio playback device ID (default=-1)
Audio capture latency, in ms (default=100)
Audio playback latency, in ms (default=100)
Auto close audio device when idle for N secs (default=1)
Specify N=-1 to disable this feature.
Specify N=0 for instant close when unused.
Disable audible tones
Specify jitter buffer maximum size, in frames (default=-1)

Add one more audio stream

Media Transport Options:

--use-ice

Enable ICE (default:no)

BARIXAG | |/

-—ice-regular
--ice-max-hosts=N
--ice-no-rtcp
—-—rtp-port=N
—-—rx-drop-pct=PCT
—-—tx-drop-pct=PCT
—--—use-turn
==CUTM=FTV
==CUZM=LECD
—-—turn-user

—-—turn-passwd

Use ICE regular nomination (default: aggressive)
Set maximum number of ICE host candidates
Disable RTCP component in ICE (default: no)
Base port to try for RTP (default=4000)

Drop PCT percent of RX RTP (for pkt lost sim, default:

default:

0)
Drop PCT percent of TX RTP (for pkt lost sim, 0)
Enable TURN relay with ICE (default:no)

Domain or host name of TURN server ("NAME:PORT" format)
Use TCP connection to TURN server (default no)

TURN username

TURN password

Buddy List (can be more than one) :

—-—add-buddy url

User Agent options:
—-—auto-answer=code
——max-calls=N
—-—thread-cnt=N
—-—duration=SEC
—-—norefersub
—-—use-compact-form
—-—-no-force-1r

—-—accept-redirect=N

CLI options:
--use-cli
—--cli-telnet-port=N

—--no-cli-console

Add the specified URL to the buddy list.

Automatically answer incoming calls with code (e.g. 200)
Maximum number of concurrent calls (default:4, max:255)
Number of worker threads (default:1)

Set maximum call duration (default:no l1imit)

Suppress event subscription when transferring calls
Minimize SIP message size

Allow strict-route to be used (i.e. do not force 1r)
Specify how to handle call redirect (3xx) response.
0: reject, 1: follow automatically,

2: follow + replace To header (default), 3: ask

Use CLI as user lnterface
CLI telnet port
Disable CLI console

54.1

The “hidden” SIP Client telnet interface

The SIP client is listening for telnet connections at port 52221. You can manually control a large number of
parameters of the PJSUA based SIP client. For more information and the list of supported commands take a
look at the PISUA user manual. Below is a command to get the detailed status:

asi$ telnet 192.168.11.159 52221
Trying 192.168.11.159...

macmini:

Will map carriage return on output.
Will send carriage returns as telnet <CR><LF>.
Connected to 192.168.11.159.

BARIXAG | |/

Escape character is '*]'.

barix> dd

12:30:21.761 pjsua core.c !Start dumping application states:

PJLIB (c)2008-2009 Teluu Inc.

Dumping configurations:

PJ VERSION : 2.4.5

PJ M NAME : arm

PJ HAS PENTIUM : 0

PJ _0OS NAME : arm-buildroot-linux-gnueabi
PJ CC NAME/VER (1,2,3) : gcc-4.8.3

PJ IS (BIG/LITTLE) ENDIAN : little-endian
PJ HAS INT64

PJ HAS FLOATING POINT

PJ DEBUG

PJ FUNCTIONS ARE INLINED
PJ LOG_MAX_ LEVEL

PJ LOG MAX SIZE
PJ_LOG_USE_STACK BUFFER
PJ_POOL DEBUG

PJ _HAS POOL ALT API
PJ_HAS_TCP : 1
PJ_MAX_ HOSTNAME : 128

S O© = AN O © =R O K

ioqueue type : select
PJ IOQUEUE MAX HANDLES

PJ IOQUEUE HAS SAFE UNREG
PJ HAS THREADS

PJ LOG USE STACK BUFFER

PJ HAS SEMAPHORE

PJ HAS EVENT OBJ

PJ ENABLE EXTRA CHECK

PJ HAS EXCEPTION NAMES

PJ MAX EXCEPTION ID

PJ EXCEPTION USE WIN32 SEH:
PJ TIMESTAMP USE RDTSC:

PJ OS_HAS CHECK STACK

PJ HAS HIGH RES TIMER

N
[N

N © © © M~ kM oM~ koM kR kR

Dumping endpoint 0x209164:

BARIXAG | |/

Dumping caching pool:

Capacity=0, max capacity=0, used cnt=21

Dumping all active pools:

pjsua: 5984

pept0x209100: 49076

pjsua-app: 7644

tsxlayer: 4332

ualx216e50: 2284

med-ept: 24436

alsa aud base: 13200

alsa aud: 100

codec-mgr: 196

speex: 196

gsm: 196

g711: 196

g722: 196

116: 196

evsub: 1564

udp0x22b3e0 : 824

glck0x22b7£0: 408

rtd0x22b9£8: 4592

acc0x22ca00: 364

acc0x22cc08: 660

regc0x22cell: 2400
Total 119044 of

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

9024
52096
10024
5120
3072
26112
13568
256
256
4096
4096
4096
1024
4096
2048
1024
512
12096
512
768

3072

(663)
(94%)
(76%)
(84%)
(74%)
(93%)
(97%)
(393)
(76%)
(43)

(43)

(43)

(19%)
(43)

(76%)
(803)
(793)
(373)
(713)
(853)
(78%)

156968 (75 %) used!

Endpoint pool capacity=52096, used size=49076

Outstanding transmit buffers:

Dumping listeners:

Dumping transports:

0

used
used
used
used
used
used
used
used

used

used
used

used

used

used

used
used
used
used
used
used

used

udp0x22b3e0 udp 0.0.0.0:5060 [published as 192.168.11.159:5060] (refcnt=3)

Timer heap has 3 entries

Dumping PJMEDIA capabilities:

Total number of installed codecs:

Audio codec
Audio codec
Audio codec
Audio codec

Audio codec

FHF FHF FHF FHF H H
G N W M R O

Audio codec

14

64.0Kbps,

20ms vad plc)

: pt=98 (speex @16KHz/1, 27.8Kbps, 20ms vad cng plc penh)
: pt=97 (speex @8KHz/1, 15.0Kbps, 20ms vad cng plc penh)
: pt=99 (speex @32KHz/1, 29.6Kbps, 20ms vad cng plc penh)
: pt=104 (iLBC @8KHz/1, 13.3Kbps, 30ms vad plc penh)

: pt=3 (GSM @8KHz/1, 13.2Kbps, 20ms vad plc)

: pt=0 (PCMU @8KHz/1,

BARIXAG | |/

Audio codec # 6: pt=8 (PCMA @8KHz/1, 64.0Kbps, 20ms vad plc)
Audio codec # 7: pt=9 (G722 @l16KHz/1, 64.0Kbps, 20ms vad plc)

Audio codec # 8: pt=11 (L16 (@44KHz/1, 705.6Kbps, 10ms vad plc disabled)
Audio codec # 9: pt=10 (L16 @44KHz/2, 1.41Mbps, 10ms vad plc disabled)

Audio codec #10: pt=120 (L16 @8KHz/1, 128.0Kbps, 20ms vad plc disabled)
Audio codec #11: pt=121 (L16 @8KHz/2, 256.0Kbps, 20ms vad plc disabled)
Audio codec #12: pt=122 (L16 @16KHz/1, 256.0Kbps, 20ms vad plc disabled)
Audio codec #13: pt=123 (L16 @16KHz/2, 512.0Kbps, 20ms vad plc disabled)

Dumping media transports:

Dumping transaction table:

Total 0 transactions

- none -
Number of dialog sets: 0
Dumping pjsua server subscriptions:
<sip:192.168.11.159:5060>

- none -

sip:change me@change me.server.com

— none -

Dumping pjsua client subscriptions:

- no buddy list -

12:30:21.881 pjsua core.c Dump complete

barix>

NOTE 1: To Enable the webUI control for changing the telnet port open the

/usr/local/www/current/cgi-bin/uinetwork.cgi file on the device, and uncomment the

command port settings.

NOTE 2: There are commands to add another SIP account, rearrange the order of codec, etc. While they
may work at runtime, all changes will be lost when the application is restarted since the application start
script regenerates the /etc/pjsua. conf file everytime. To make your changes permanent, change the

pjsus template in the /baric/config/templates/templates folder.

BARIXAG | |/

6 Barix Linux Ecosystem

This chapter gives a brief overview of the Barix Linux System from the user space point of view.

6.1 SPI Flash Partitioning
The IPAM-400 module has 16 MB SPI flash, which is partitioned according to the following layout:

No | Partition Size Purpose FS type
Name
0 U-boot 1 MB | The U-Boot partition contains the SPL U-Boot. This partition starts | raw
at offset 0x000000 and ends at 0x100000.
1 Rescue 13 MB | The Rescue image is a FIT image containing the Linux Kernel, the | raw
Image Kernel DTB, and the RAM disk with the rescue root fs. This
partition starts at offset 0x100000 and ends at OXEO000O.
2 Shadow 1MB The Shadow parameters partition contains a set of parameters vfat
parameters that can be used by the Rescue image and the Firmware Upgrade

Client. This partition starts at offset OxEO0000 and ends at
0xF00000. At boot it gets mounted to /mnt/shadow

3, | Factory 4 MB | Factory parameters are stored in the Production parameters area | raw
4 parameters that starts at the beginning of the last megabyte of the SPI flash.

The MAC addresses of the Ethernet and of the WiFi card are
stored at the beginning of the Production parameters partition as
hexadecimal values. Each MAC is followed by the CRC8 of the
MAC addresses itself. These addressed are read by the U-Boot
and they are made available to the user space. Up to 4 MAC
addresses can be stored at this location.

Hardware information, image information and test parameters are
stored in a JSON file starting at an offset of 64Kbyte of the
Production parameters area. The JSON file is stored with a small
header of 6 bytes containing the file size (4 bytes) and the file
CRC16. A redundant copy of this JSON file is stored at on offset
of 64Kbyte from the primary file and it's used in case the primary
file is invalid.

You can view the current SPI Flash layout with the following command:

root@barix-ipam400:~ # cat /proc/mtd
dev: size erasesize name

mtd0: 00100000 00001000 "uboot"

mtdl: 00400000 00001000 "fit"

mtd2: 00100000 00001000 "shadow"

mtd3: 00010000 00001000 "production-ro"
mtd4: 000£0000 00001000 "production"
root@barix-ipam400~#

6.2 SD Card layout

The Micro-SD will be formatted so that it contains partitions for two Linux images plus a large user data
space.

One image will be defined the primary image, the other is the secondary image and is used in case a newly

BARIXAG | |/

downloaded image does not work. The function of the two images is swapped after a successful firmware
upgrade is executed.

The Micro-SD layout is shown in the following picture:

U-Boot env.
BOOT
Primary image -: Kelr?noecl)’t EEB
Secondary image -i Kelr?noecl;t E;B
Data partition

The Linux Kernel and the kernel device tree (DTB) are embedded in the Root FS. This reduces the total
number of needed partitions and simplifies the handling of the updates.

6.3 SystemV Init

For system initialization the standard System V Init is used. Init is started after kernel initialization, by
executing the /sbin/init. Itis a direct or indirect ancestor of all processes, maintains orphaned
processes, and starts or restarts processes after they end (e.g. the login console after a user logs out).

Init employs a concept of runlevels, which are the states of the system. The runlevels are defined in the file
/etc/inittab; for each runlevel a set of actions is defined. There are 8 runlevels: 0 to 6 and S (or s); three
of the runlevels are reserved for special action: 0 = halt, 1 = single user, 6 = reboot. Other runlevels are
defined by the system.

For initialization System V Init calls rc scripts, which are a set of shell scripts located in directories
/etc/init.d, /etc/rc.0to /etc/rc.6and /etc/rc. S.

For each runlevel a set of actions on entering and leaving is defined. Each directory contains scripts (or
symbolic links to scripts in /etc/init.d) that start or stop the specific service. The scripts are ordered by
name, each name is prefixed with a number giving the order of execution. Start scripts are prefixed with “S”,
stop scripts with “K” (kill). When Init changes the runlevel it first executes the “kill” scripts for the previous
runlevel and then the “start” scripts for the new runlevel.

6.4 Runlevels

Table 1 lists the system run levels.

The system boots in run-level S and then enters run level 2, which is the default run level for system start up,
the system starts the default application and provides a login prompt on the serial console.

On system shut-down run level 0 is entered, on reboot, run level 6. Run levels 3 to 4 are not used and they

BARIXAG | |/

link to run level 2.
Run level 5 is dedicated for production testing.
Run level 1 is dedicated to system administration, it does not start the application.

Run level Description
0 Halt
S Start-up; executed at boot time before entering any other runlevel
1 Reserved for single-user mode without application start
2 Not used, identical to level 5
3 Not used, identical to level 5
4 Not used, identical to level 5

5 (de- | Full Application functionality with serial console login

fault)
6 Reboot
c Pseudo run level for system re-configuration. Does not change the current run

level, just executes the respective rc script.

6.5 Configuration run level

The Init used in Linux offers several pseudo run levels (a,b,c) to invoke certain system wide actions. Barix
uses the pseudo runlevel ¢ (“c” for configuration) for the purpose of system reconfiguration via the web UI.

When Init with runlevel ¢ is invoked, it does not change the current runlevel (in normal operation it stays
at 2), but just executes once the respective script /etc/init.d/rcC which performs the reconfiguration.

6.6 Configuration Framework

The ARM based IPAM 400 platform has a software architecture that is common to Unix systems, utilizing
many software components (services, background tasks, scripts) that cooperate and communicate with each
other.

The large variety of system components and services, each with its own configuration file syntax, typically
located in the /etc directory of the root file system, raised the need for Barix to create a unified configuration
interface for all system components. This interface is the Configuration Manager, which is accessed using

BARIXAG | |/

the web UL.

6.6.1 Configuration Manager

The architecture of the configuration system is depicted in the picture below. The configuration manager
consists of a database holding all system settings (Configuration database) and the Configuration
process providing interface to the web Ul on one side and passing the configuration to the system
components in the right format on the other side. The configuration database is stored in the root file system,
effectively in the NAND flash memory.

The functions of the configuration process are the following:
e Maintain the configuration database (create, store, update)

e Provide functions to the web Ul (and possibly to “remote update”): changing individual
parameters, downloading of the complete configuration, uploading of the complete configuration

e Create individual configuration files for each system component: extract relevant configuration
parameters, save in the right format

¢ Restart individual system services, if needed, in order to apply the new configuration

The benefit of this approach is that a new system configuration can be applied without a system reset, and at
the same time the new configuration is stored permanently.

Change individual
parameters via web Ul

Download complete
config via web UI

Upload complete
config via web Ul

Configuration manager

Configuration process

Configuration database

v lJ l v v

Network config Sonlc IP config Application config NTP config Web server config
- IP address - sonic IP on/foff - various parameters - NTP server - web server port
- net mask address
- gateway
- DN5S address

6.6.2 Configuration Framework implementation

The implementation of the Configuration Manager is based on OpenWRT's program UCI. UCI maintains a
text-based database of configuration parameters in the “key=value” form and provides a simple hierarchy of
2 levels. A change-commit access to the database is managed. Modified parameters need to be committed
for permanent storage. UCI natively supports the following functions:

e parameter read and write

BARIXAG | |/

e add and delete parameters
o list parameters, list modified (uncommitted) parameters
e configuration database dump
e configuration import
Additional scripts have been built around UCI to:
e integrate with the WEB Ul
e automatically generate configuration files for system programs and the application
e automatic restart of system services after configuration change

6.6.3 Configuration Database

6.6.3.1 Folder structure
The configuration database is stored in the /barix/config folder. The following structure is used:

Directory Description
/current Current device configuration
/defaults The default configuration
/templates Templates for automatic generation of configuration files in /etc

6.6.3.2 UCl internal configuration file format
UCI stores configuration in multiple text-based files. The structure is described in detail in the OpenWRT
documentation.2 Barix uses the following conventions:

e athree level hierarchy is used: package, section, parameters

e parameters related to a single package are stored in a file with the “package” name,
e.g. the parameters belonging to the package httpd are stored in the file
/barix/config/current/httpd

e the parameters are referenced as package.section.parameter
e each package corresponds to a subsystem, e.g. network, ntp, rtc, timezone, etc.
o each file can be further broken down into section, e.g. network.ethO, network.sonic_ip
e sections contain the actual parameters
Example of a configuration file “network”:

package 'network'

config interface 'ethO'

option proto 'dhcp'

2 http://wiki.openwrt.org/doc/uci

BARIXAG | |/

option ipaddr '192.168.1.100'
option netmask '255.255.255.0'
option gateway '192.168.1.1'

config sonic ip 'sonic ip'
option enabled 'true'

option volume '50%'

The structure described above is used for internal representation and for the default configuration.
Configuration dump (upload and download the complete configuration to/from the device) also uses the
same syntax, however all packages are listed in a single file - the internal files are simply concatenated.

6.6.3.3 Current device configuration

The device current configuration is located in the /barix/config/current folder.

In order to prevent configuration loss on system update (root filesystem re-flashed), the configuration
parameters are located on a dedicated NAND patrtition, which is not erased during update. This partition is
mounted to /barix/local andthe /barix/config/current is just a symbolic link to
/barix/local/config. The mounting is handled by the /etc/init.d/mount config startup script.

A new device straight from the factory contains an empty configuration partition. This is detected during the
first start-up and in such a case, the default parameters are simply copied into the current configuration
folder.

6.6.3.4 Default configuration

The default settings are located inthe /barix/config/defaults folder. If factory defaults are applied the
files from the defaults configuration folder “defaults” are copied over to the runtime configuration folder
“current’.

A selective copy can be done to omit certain settings, e.g. as the network settings are not changed, if the
“factory defaults” option was selected over the web interface.

The default parameters can be altered simply by modifying the appropriate files in the “defaults” folder (i.e..
in the root filesystem image).

6.6.3.5 Runtime configuration

UCI maintains a copy of the runtime configuration in a temporary folder /var/run/.uci This folder
contains the uncommitted changes.

6.6.4 Interfaces

6.6.4.1 Binaries
Configuration subsystem binaries and scripts are stored in the following files and locations:

File Description

/sbin/uci The main command line interface to UCI

/lib/config/functions.sh Functions for WEB Ul integration

BARIXAG | |/

File

Description

/lib/config/gen_config.sh

components

Script for the generation of configuration files in /etc for system

6.6.4.2 UCI command line interface

The UCI command line program is described in detail in the OpenWRT documentation.3 This chapter lists

only the most common use cases:

e set parameter value:

uci set package.section.parameter=value

e get a single parameter value:

uci get package.section.parameter

o list all parameters:

uci show

e commit changes in order to be permanently stored:

uci commit

6.6.4.3 WEB Ul integration

In /lib/config/functions.sh high level Bash script functions are defined for easy use in shell scripts like init
scripts, CGI scripts, etc. For forward compatibility reasons it is recommended to use the functions defined

below instead of calling UCI directly.

These functions can be included using the Bash syntax:

/1lib/config/functions.sh

The following functions are defined:

Name

Parameters

Description

cfg_print_param

1. full parameter
name

Prints a value of a parameter to stdout. The

value is printed without end of line.
Example:

cfg_print_param network.ethO.proto

3 http://wiki.openwrt.org/doc/uci

BARIXAG | |/

Name

Parameters

Description

cfg_bool_is_true

1. full parameter
name

Assumes a bool parameter, returns true or
false according to the bool parameter value.
To be used in expressions.

Example:

if cfg_bool_is_true network.sonic_ip.enabled ;
then /usr/local/sbin/sonic_ip ethO; fi

cfg_string_compare

1. full parameter
name

2. string to com-
pare with

Compares parameter value with a string and
returns true if the strings are equal, false oth-
erwise.

Example:

if cfg_string_compare network.ethO.proto
“dhcp” ; then /usr/sbin/dhcpcd; fi

cfg_set_param

1. full parameter
name

Sets parameter to a value

2. value
Example:
cfg_set_param network.sonic_ip.enabled false
cfg_save None commits configuration parameters and restarts

the respective services

cfg_has_changed

1. full parameter
name

Returns true if the configuration parameter in
argument has changed, false otherwise

cfg_restarting_services | None Returns true if service restarting is in progress,
false otherwise (i.e. system again fully func-
tional).

cfg_dump_database None Dumps the complete configuration to standard

output

BARIXAG | |/

Name Parameters Description

cfg_restore_database 1. File with config- | Imports configuration from a file. Restarts the
uration dump affected system services.

cfg_restore_defaults None Restore factory defaults and restart all af-
fected services

cfg_restore_soft_de- None Restore factory defaults without network set-
faults tings and restart all affected services

6.6.4.4 Automatic system service restarting
After the configuration parameters are applied, the affected system services need to be restarted. This is
automatically done by the above-mentioned functions.

When the configuration parameters are changed e.g. by calling cfg_set _param and the configuration is
saved by calling cfg_save, then the following sequence is executed:

1. Parse all the UCI dependencies (see section 34) created for the given application, then
a list of affected packages is created and stored in /var/run/.service_restart_list

UCI configuration is committed

Runlevel “C” is triggered by calling “init ¢”

The caller (e.g. CGl script calling save_cfg) returns
Init calls /etc/init.d/rcC, which restarts the services

o g s~ w DN

The status of the services restarting can be polled by calling cfg_restarting_services

The folder /barix/config/templates/rc.d/ contains a symbolic link for each service to the
appropriate init script in /etc/init.d. The same naming convention as in /etc/rcN.d is used (only
“start” scripts); the numbering defines the order in which the affected services are restarted. The restart is
executed by calling the respective init script with the “restart” parameter. If ypu like to have your application
or service automatically restarted, you have to add it there, and the best way to do that is to include
commands to install the corresponding symlinks in your project

6.6.4.5 UCl services dependency system

In some cases you may need to restart a specific service or application when you change a specific
configuration option from the webUI. The UCI framework does that by checking the dependencies defined for
the specific application in the /barix/config/deps folder. For example for the sip_demo application we have:

BARIXAG | |/

Name A |Size Darte Per...
<DIR> 06/01/16 17

B8 buildroot
B .git
W arch
@ board
B boot
B configs
dl
B docs
W fs
W linux
B output
B build
B8 host
B8 images
B release
BR staging
B8 target
W barix
8 app
B config
B8 defaults
B8 deps
|_Jsip_demo
B8 templates
M info
B local

£
@
[]
B -
]

We see that we have dependencies for three services/applications: application, network, and ntp. These are
just text files that contain the list of configuration options on the change of which the given service needs to
restart. For example for the application service (which is the /etc/init.d/application service that is controlling
the start/stop of our sip_demo application) we have:

application
restart application on the followig uci settings change
network.ethO.proto

pjsua
simple player

This means thaw the application service will restart on:
a) change of the protocol option for the network service
b) any change in the pjsua options
c) any change in the simple_player options

We can specify also a specific section, for example, if we replace “pjsua” with “pjsua.sip_account” which
would mean: “Restart the application if any parameter in the sip_account section of pjsua changes.
To view all the pjsua parameters available in UCI we can just type from the serial terminal:

[root@barix ~]# uci show pjsua

pjsua.sip account=section

pjsua.sip account.reg to=600

pjsua.sip account.username=9245

pjsua.sip account.registrar=sip99.barix.com

pjsua.sip account.password=my test passwd

pjsua.aec=section
pjsua.aec.no vad=y

pjsua.aec.ec tail=250

BARIXAG | |/

pjsua.aec.ec _opt=speex
pjsua.misc=section
pjsua.misc.autoanswer=n
pjsua.misc.cmd port=52221
pjsua.misc.capture lat=200
pjsua.misc.playback lat=200
pjsua.misc.quick dial num=change me
pjsua.misc.dtmf pattern=1234
[root@barix ~]#

6.6.4.6 Configuration files for system components

The device configuration parameters are stored in the UCI database, however most of the system
components use their own configuration files and not UCI. Therefore a thin intermediate layer has been
implemented in a form of shell script /1ib/config/gen config. sh.

This script can generate any text-based configuration file and be called from any of the init scripts in
/etc/init.d/ using the following syntax:

/1ib/config/gen config.sh <package>

this creates the configuration files for the given package. For example, the following call creates
configuration files for the network subsystem.

/1ib/config/gen config.sh network

For the successful configuration file generation a template must be present in
/barix/config/templates folder. It is a Bash file, which is included by the gen_config.sh and contains
the following elements:

Name Type Description
DST_FILE array Absolute path to the target generated configuration file.
TEMPLATE_FILE array Optional template file, which is prepended to the auto-generated

configuration. Template files are located in /barix/config/tem-
plates/templates

COMMENT_PREFIX array Character used to indicate comment. Typically hash “#”
DYNAMIC_CON- array Function to create the dynamic content. Typically “create_dy-
TENT_FN namic_config”

create_dynamic_config function | Shell function to print the dynamic content. This function reads the
UCI configuration parameters and prints them in the appropriate
format. The output is redirected to the target file

If only a single configuration file needs to be created the elements are initialized without index as in the

BARIXAG | |/

following example:

DST FILE=/etc/ntp.conf

If multiple files are to be generated for each above element an array is created as:

DST FILE[O]=
DST FILE[1]=

and the corresponding functions for dynamic content are defined.

Barix configuration interface

(c) 2018 Barix AG

#

meta-file for automatic config-file generation

destination file for the configuration (absolute path)

DST FILE=/etc/ntp.conf

template file located in /barix/config/templates/templates (no template)
TEMPLATE FILE=

comments are prefixed with this character

COMMENT PREFIX="#"

function to create the dynamic content

DYNAMIC CONTENT FN=create dynamic config

function to create dynamic content
function create dynamic config ()
{
servers
owner= cfg print param ntp.source.owner
if ["system" = "Sowner"], then
for nr in 1 2 3 ; do
server='cfg print param ntp.source.serversnr’
if [Sserver] ; then echo "server Sserver iburst" ,; fi
done
elif ["application" = "Sowner"],; then
for nr in 1 2 3 ; do
server="cfg print param ntp.source.server appsnr’
if [Sserver] ; then echo "server Sserver iburst" ; fi
done
fi
access restrictions

echo "

BARIXAG | |/

By default, exchange time with everybody, but don't allow configuration.

restrict -4 default kod notrap nomodify nopeer #noquery

restrict -6 default kod notrap nomodify nopeer #noquery

Local users may interrogate the ntp server more closely.
restrict 127.0.0.1
restrict ::1

"

}

More advanced example with multiple target configuration files:

Barix configuration interface
(c) 2012 Barix AG
#

meta-file for automatic config-file generation

- create /etc/network/interfaces

destination file for the configuration (absolute path)

DST FILE[0]=/etc/network/interfaces

template file located in /barix/config/templates/templates
TEMPLATE FILE[O]=network.interfaces

comments are prefixed with this character

COMMENT PREFIX[0]="#"

function to create dynamic content

DYNAMIC CONTENT FN[O]=create network interfaces

function to create dynamic content
function create network interfaces()
{
if cfg string compare network.eth(O.proto "dhcp" ; then
DHCP configuration, get all auto
echo "iface ethO inet dhcp"
if cfg string compare network.eth(O.dhcpname ""
true
else
echo -n " hostname '"

cfg print param network.eth(O.dhcpname

then

BARIXAG | |/

echo -n mrn

fi
else
DHCP configuration, set all static
ipaddr="cfg print param network.eth(.ipaddr’
netmask="cfg print param network.eth(.netmask’
gateway="cfg print param network.eth(O.gateway
echo "iface eth0O inet static"”
echo " address Sipaddr"
echo " netmask Snetmask"
if [-n "Sgateway"],; then
echo " gateway Sgateway"
fi
fi
}
——————— create /etc/resolv.conf

destination file for the configuration (absolute path)

DST FILE[1]=/etc/resolv.conf

template file located in /barix/config/templates/templates
TEMPLATE FILE[1]=

comments are prefixed with this character

COMMENT PREFIX[1]="#"

function to create dynamic content

DYNAMIC CONTENT FN[1]=create resolv conf

function to create dynamic content
function create resolv conf ()
{
if cfg string compare network.eth(O.proto "static" ; then
dnsl="cfg print param network.eth(O.dnsl’
dns2="cfg print param network.eth(O.dns2’

BARIXAG | |/

if ["XSdnsl" != "X"] ; then echo "nameserver Sdnsl" ; fi
if ["XSdns2" != "X"] ; then echo "nameserver Sdns2" ; fi

fi

no action for DHCP

————— create /etc/sonicip.conf

destination file for the configuration (absolute path)

DST FILE[2]=/etc/sonicip.conf

template file located in /barix/config/templates/templates

TEMPLATE FILE[2]=

comments are prefixed with this character

COMMENT PREFIX[2]="#"

function to create dynamic content

DYNAMIC CONTENT FN[Z2]=create sonicip conf

function to create dynamic content

function create sonicip conf ()

{
sonic vol='cfg print param network.sonic ip.volume’
if ["X$sonic vol" != "X"] ; then echo "SONICIP VOLUME=$sonic vol" ; fi
}
6.7 Web Interface
6.7.1 Functions

The web interface is the major user interface of Barix devices and the only interactive way to configure a
Barix unit. It has the following functions:

6.7.2

6.7.2.1

display runtime device status

provide a configuration interface

allow control of the device over the network

maintenance interface to: update firmware, reboot the unit and revert the settings to factory defaults

Web interface components

Web server

The standard web server on Linux server systems is Apache. Due to its size, process-based architecture,

BARIXAG | |/

resource demands and speed it is not suitable for embedded systems. An event driven single process server
seems to be more suitable for embedded systems. Therefore a lightweight alternative to Apache has been
selected — Lighttpd.

6.7.2.2 CGI and dynamic page content

For CGI and dynamic page content a lightweight and simple scripting language is needed; the Haserl4
module for Lighttpd is used, together with Bash scripting.

6.7.2.3 Web Configuration

The webserver configuration is located in /etc/lighttpd. The following features are configured:
e no virtual hosts
e HTTP only
e web server port is configurable, default 80
e web server running under user:group www-data:www-data
e maximum 2 simultaneous worker threads
e automatic indexes
e CGl executed via Haserl

e digest authentication support using /etc/lighttpd/.passwd file

6.7.3 Web Folders

6.7.3.1 Web server folders
The web server uses the following folders:

Directory Description
/etcl/lighttpd Web server configuration
/var/log Log files
/var/run Runtime temporary files
{usr/local/mwww Web content

6.7.3.2 Web content structure

The web Ul content is split in to a common system part and an application specific part. This way multiple
applications can have their web Ul, sharing a common structure and common system-specific pages. Each
application’s specific web Ul files are stored in a dedicated directory. The symbolic link “current” points to the
current application's web Ul.

The following folder convention is used in the web content folder /usr/local/www:

4 http://haserl.sourceforge.net/

BARIXAG | |/

Directory Description

/applicationl Web Ul files for application 1

/application2 Web Ul files for application 2, etc.

/current Symbolic link pointing to the current application

/sys Common system web Ul files containing the frame-work, look and feel, styles, menu,

common pages for status, reboot, update, factory defaults, etc.

Linked with a symbolic link from each application folder

/template Example application web Ul folder

6.7.3.3 Application specific files
Within the application folder the following convention is used:

Name Description
cgi-bin Folder for CGlI scripts and all dynamic pages
images Folder for images
is Folder for Java Script
sys Symbolic link to the system “sys” folder
index.html The index file - entry to the web Ul

6.7.3.4 CGlI scripts

Files containing dynamic content as well as CGl files to receive user actions with GET or POST are
implemented using Bash scripting and Haserl. Haserl uses a similar syntax to PHP: the CGl file contains
static content (HTML), if dynamic content — the Bash script — needs to be added, it is enclosed within <% and
%> tags.

Overview of operation
See the Haserl documentation5 for a detailed description, what follows is an overview:

5 http://haserl.sourceforge.net/

BARIXAG | |/

e The environment is scanned for HTTP_COOKIE, which may have been set by the web server. If it
exists, the parsed contents are placed in the local environment.

e Script parameters received via HTTP GET or POST are placed in the local environment.

e The script is tokenized, parsing haserl code blocks from raw text. Raw text is converted into "echo"
statements, and then all tokens are sent to the sub-shell.

o Haserl forks and a sub-shell (typically /bin/sh) is started.

o All tokens are sent to the STDIN of the sub-shell, with a trailing exit command.

e When the sub-shell terminates, the haserl interpreter performs final cleanup and then terminates.

e The STDOUT of the script is sent raw to the web browser. Please note that the HTTP header must
be sent for proper operation.

6.7.3.5 CGl functions
Several Bash functions are provided to ease working with device configuration and status, they are stored in
/usr/local/lib/cgi.

Naturally, the configuration functions described above can be used as well.
Do not forget to include the respective shell file to use the function.

Function Parameters File Description
form_print_radio 1. configuration pa- config.sh | Assumes a boolean configuration parame-
rameter full name ter. Prints 2 radio buttons, one for the true
value, one for the false value and selects
2. true label the currently selected value. The corre-
sponding labels are provided as function
3. false label parameters 2 and 3.
print_http_hdr 1. optional content generic.sh | Typically call this function at the beginning
type of your script.
Prints HTTP with content type. Unless
specified the text/html content type is used.
print_datetime None status.sh | Print device's date and time
print_hw_type_id None status.sh | Print device's hardware ID as integer
print_device_type None status.sh | Print device's hardware type as text
print_module_type_id None status.sh | Print device's IPAM module ID as integer
print_ipam_type None status.sh | Print device's IPAM module type as text

BARIXAG | |/

Function Parameters File Description

print_fw_version None status.sh | Print application version
print_kernel_version None status.sh | Print kernel version

print_uptime None status.sh | Print system uptime in a nice form
print_mac_addr None status.sh | Print device's MAC address
print_ip_addr 1. optional interface | status.sh | Print current device IP address.

By default refers to ethO status. Optionally
the interface name can be provided as a
parameter.

print_netmask 1. optional interface status.sh | Print current device netmask

By default refers to ethO status. Optionally
the interface name can be provided as a
parameter.

print_default_gw 1. optional interface status.sh | Print current device default gateway

By default refers to ethO status. Optionally
the interface name can be provided as a

parameter.
print_dhcp_name None status.sh | Print device DHCP name
print_dns_servers None status.sh | Print current DNS servers, one per line
print_mount_table 1. parameters to the | status.sh | Prints an HTML table with removable stor-
<table> element age device information. The output is simi-
lar to “du -sh”.

2. “no devices” text
The 1 parameter is printed as options to
the <table> element.

The second parameter is printed as a mes-
sage if no media is found (typically use “no
media found”)

BARIXAG | |/

Function

Parameters

File

Description

show_device_config

None

status.sh] List the current device configuration.

CGl variables — HTML

forms

HTML forms sent to the device via GET or POST method are captured by Haserl and the keys and values
are stored in the Bash script environment variables as:

Variable

Description

FORM_key=value | All form variables

GET_key=value Keys sent via the GET method

POST_key=value

Keys sent via the POST method

BARIXAG | |/

7 Miscellaneous

In this section we will mention some tips and tricks that will make more easy the development with the IPAM-
400 SDK

7.1 Connecting serial terminal

Using the serial terminal is an important part of the Linux development process, especially for viewing the
boot-up messages and doing some debugging on the device if the network is not properly set up, or broken.

IPAM-400 serial is connected to J7. Since they are 3.3V compatible, make sure that you use the correct USB
to serial adapter. The connections are shown in the photo and table below:

\Il?n Wire Functio | Connecti
Colour n on

No

1 White | Tx dCO””eCte

2 Green Rx gonnecte

3 Black Gnd dConnecte

- Red 3.3V Not used

NOTE 1: The latest IPAM-400 modules do come from the factory without the 3 pin header soldered. You
may need to solder it yourself.

NOTE 2: Never use/connect serial interfaces with 5V or 12V, because this may damage the IPAM-400
module!

NOTE 3: In order to powercycle the device, you need also to disconnect temporary the serial interface.

Next, after booting the device, and connecting your USB-to-serial adapter to the device, you will need to
open a serial terminal on your development PC using a standard terminal emulator with the following
parameters: 115200,8,0,N.

You can use the following emulators:
e Linux: minicom, CoolTerm, GTK Term
e MacOS: Zterm, minicom
o Windows: Putty
For example, to open the terminal on mac using minicom

MacBook-Pro-2:~ asi$ minicom -D /dev/cu.usbserial

Welcome to minicom 2.7.1
OPTIONS: I18n

Compiled on May 17 2017, 04:52:30.
Port /dev/cu.usbserial, 13:48:33

BARIXAG | |/

Press CTRL-A Z for help on special keys

Once you see the minicom greeting screen above, then press Ctrl+Z,A,O to enter in the minicom
configuration menu, and set the serial port communixation parameters accordingly

NOTE 1: Use the correct device name for your own controller. You can find it on MAC with this command:

MacBook-Pro-2:~ asi$ 1s -la /dev/tty.*

crw-rw-rw— 1 root wheel 17, 0 Apr 18 08:31 /dev/tty.Bluetooth-Incoming-
Port

crw-rw-rw— 1 root wheel 17, 2 Apr 18 08:31 /dev/tty.w810i-SerialPort
crw-rw—-rw— 1 root wheel 17, 4 Apr 18 14:10 /dev/tty.usbserial

MacBook-Pro-2:~ asi$s

On Linux system the name of the serial port will be most likely /dev/ttyUSBO

7.2 Useful Yocto commands

7.2.1 Recompiling specific package

Sometimes is necessary to test a small change in the code, and recompile the package, without the need to
go through the same whole process of committing the chages to the repo, fetching the new one on jocto, and
recompiling again. Instead, just modify the file you need directly in the build folder of the package, then use
the following command:

bitbake —-f —-c compile pjsua (use your own package name here)

7.2.2 Cleaning a package
To clean the working folder of a package, use the following command

bitbake -c cleanall -f pjsua (use your own package name here)

Be aware that his will clean everything so the sources will be fetche either from a GIT repo (for git recipes),
or decompressed from the tarball (for local recipes), so take care not to lose any modifications you have
done

7.2.3 Generate compiling tool chain

Sometimes it might be useful to generate a toolchain with which you can develop externally your package,
without the hastle to use the whole infrastructure needed by Yocto. Use the command:

bitbake —-c populate sdk core-image-barix-sdk

The result will be a selfextracting script file in the build/tmp-glibc/deploy/sdk/ folder, containing the
cross-toolchain and all the needed libraries to compile your application without all the hastle of using the
complete Yocto infrastructure.

work/oe-core/build$ 1s tmp-glibc/deploy/sdk/
oecore-i686-cortexa’hf-neon-vfpv4-toolchain-nodistro.(0.host.manifest
oecore-i686-cortexa’hf-neon-vfpv4-toolchain-nodistro.0.sh
oecore-i686-cortexa’7hf-neon-vfpv4-toolchain-nodistro.0.target.manifest
oecore-i686-cortexa’hf-neon-vfpv4-toolchain-nodistro.0.testdata. json
~/work/oe-core/builds

You can develop and compile on a standard PC, and just deploy manually to the target device the compiled
binary. Once the development phase is completed, you can then spend time to add the corresponding

BARIXAG | |/

recipes in Yocto.

To use the generated Yocto SDK, just run the script, and answer to the question where you would like to
have it installed. In the example below we have opted for the home folder, since this would not require root
access:

S ./oecore-i686-cortexa’hf-neon-vfpv4-toolchain-nodistro.0.sh

OpenEmbedded SDK installer version nodistro.0

Enter target directory for SDK (default: /usr/local/oecore-i686): ~/oecore-i686

You are about to install the SDK to "/home/test oem/oecore-i686". Proceed[Y/n]?
Y

Extracting SDK.eeueeeeeeeenns done
Setting it up...done
SDK has been successfully set up and is ready to be used.

Fach time you wish to use the SDK in a new shell session, you need to source the
environment setup script e.qg.

5 . /home/test oem/oecore-i686/environment-setup-cortexa’hf-neon-vifpv4-oe-
linux-gnueabi

Next, when you want to develop, open a terminal, source the specified file above, and use the standard
make as you usually do.

7.3 Development Environment Credentials

7.3.1 Device SSH credentials
The device default credentials are:

User: root

Password: oem devkit 17

You can use these to login to the device either via the serial interface, or SSH:

macmini:~ asi$ ssh root@192.168.11.159
root@192.168.11.159's password:
[root@barix ~]#

7.3.1.1 Changing the device password
To change the password on the device, just type the “passwd” command in the serial or SSH terminal after
login. Type the new password two times to confirm.

Please have in mind that the password will be reset to the default one in the rootfs image after a FW update.

7.3.1.2 Changing the default root password in the build

To change the default password in the build you will need to open the recipe for the image. Open recipes-
core/images/core-image-barix-sdk.bb from the meta-barix-sdk layer folder in some text editor, and
find the following line:

EXTRA USERS_PARAMS append="\

usermod -P oem devkit 17 root; \

n

and change the oem_devkit_17 password to your preference, ex:

BARIXAG | |/

EXTRA USERS_PARAMS append="\

usermod -P my new password root; \

"

and recompile again the image running the command from the Yocto build folder:

bitbake core-image-barix-sdk

7.3.2 Bitbucket credentials

You can fetch the distribution of the OEM Development Kit from BitBucket using these credentials:
Email: ipam400-oem@barix.com

User: ipam400-oem

Password: eCn-U3o0-tXg-4rF

For now it is a common login for all OEM customers, but in the future it will be converted to a group, and
every OEM customer will get his own login ID and password.

7.3.3 Adding package manager to the generated image

In some cases it might be useful to have a package manager preinstalled on the device, so that it can be
possible to install a package with all its dependencies with a single command. In this way, the Yocto
environment could be configured to compile as many packages as desired (and that may not be included in
the provided image), which can be exported to a web server, from wfich the devices can easily fetch them.

To do that, we need to do the following three subtasks:
7.3.3.1 Configuring the Yocto environment to include the OPKG manager

To add support for package management, you need to edit meta-barix-sdk/recipes-core/images/core-image-
barix-sdk.bb file, and add the package management dependencies, marked with red below:

IMAGE INSTALL= "\
${CORE_QIBA IMAGE BASE INSTALL} \
${IMAGE INSTALL BARIX COMMON} \
${IMAGE INSTALI BARIX TOOLS} \
lighttpd \
ntp \
pjsua \
sip-demo-web-ui \

opkg \

EXTRA IMAGE FEATURES= "\
debug-tweaks \

package-management \

Next, rebuild your image as specified in section 9:

bitbake core-image-barix-sdk

BARIXAG | |/

When the build finishes you will have an image, containing the opkg package manager, and the package
feeds generated in build/ tmp-glibc/deploy/ipk/ folder:

~/work/oe-core/build$ 1ls -la tmp-glibc/deploy/ipk/
total 552

drwxXr-xr-x test oem test oem 4096 May 28 16:29
AdrwxXr-xr-x test oem test oem 4096 May 28 16:30
AdrwxXr-xr-x test oem test oem 4096 May 28 16:29 all
drwxr—Xr—-x test oem test oem 376832 May 28 16:29 cortexa’hf-neon-vfpv4

drwXr—-xr—x

6
6
2

drwxr-xr-x 2 test oem test oem 4096 May 28 16:29 barix ipam400
2
2 test ocem test oem 163840 May 28 16:29 i686-nativesdk
1

—rw—r—--r-—- test oem test oem 0 Apr 23 15:27 Packages

7.3.3.2 Setting a server with the generated package feeds

The next step is to export all the folders, listed above, to your web server folder. This could be done either by
manually copyinf them, ar by just creating a symlink, pointing to the location where your Yocto scripts are
generating them. Note that setting up a web server is out of the scope of this document. Please check the
corresponding manuals wor the web server you plan to use (ex. Apache, Lighttpd, buildt in MacOS HTTP
server, etc)

7.3.3.3 Configuring the device to use the package feeds

The last step is to configure the device so that ther local opkg manager so tha it nows where to fetch the
package feeds from. So, login to the device via serial interface or SSH, and create the /etc/opkg.conf
file with the following contents:

src all http:// your.server.com/ipam400/repository/ipk/all/
src barix ipam400 http:// your.server.com /ipam400/repository/ipk/barix ipam400/

src cortexa’hf-neon-vfpv4
http://your.server.com/ipam400/repository/ipk/cortexa’hf-neon-vfpv4d/

Default destination for installed packages
dest root /

option lists dir /var/lib/opkg/lists

Please note the following:
e The name of the package feeds mut be tha same as the directory names listed above

e You have to replace the http://your. server. comwith the real name or IP address of your web
server

Now it should be possible to install any package just by typin for example:

opkg install python

7.4 Listing all factory defaults

As explained in previous sections, the factory defaults are defined in the UCI defaults for every package. If
you want to have a full list of parameters that will be reset when you restore to factory defaults, then you
have two options:

BARIXAG | |/

7.4.1

Checking all defaults files in the /barix/config/defaults/ folder of the device.
Login to the device via the serial or SSH console, and type:

[root@barix ~]# cd /barix/config/defaults/
[root@barix defaults]# 1s -la

total 44
drwxXr—-xr—x

drwxXr—-xr—x

—rw-r--r--
—rw-r--r--
—rw-r--r--
—rw-r--r--
—rw-r--r--
—rw-r--r--
—rw-r--r--
—rw-r--r--
== E==E==
== E==E==
== E==E==

[root@barix defaults]# cat /barix/config/defaults/*

package

[S S S G Y

1

config section

root
root
root
root
root
root
root
root
root
root
root
root

root

'application'

root
root
root
root
root
root
root
root
root
root
root
root

root

'main config'

option active app 'pjsua’

config section 'audio'
option amplifier 'on'
option mic linein 'line'
option volume '50"
option mic gain "0dB'
option mic boost 'on'
option ad gain "0dB'
package 'dropbear'
config section 'SSH'
option Port '22'
option RootLogin '1'
option RootPasswdAuth "1’
option DisablePasswdLogins "0’

904
432
247
610
63
236
193
462
60
162
243
62
77

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

13
13
13
13
13
13
13
13
13
13
13
13
13

08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:

57
57
57
37
52
52
48
57
52
52
57
36
52

o/

V4
application
dropbear
httpd
network
ntp
pjsua
rtc
security
simple player
syslogd

timezone

BARIXAG | |/

option SSHKeepAlive "300"'
option IdleTimeout "0’
option WindowBuffer 24576
option KeepAlive '0'

option DisableLocalPortFwd 1’
option DisableRemotePortFwd 1’
option AllowRemoteHosts '0'

package 'network'

config interface 'ethO'
option proto 'dhcp'
option ipaddr '192.168.1.100"'
option netmask '255.255.255.0'
option gateway '192.168.1.1'

config sonic ip 'sonic ip'
option enabled 'true'
option volume '50%'

package 'ntp'

package 'syslogd'

config section 'remote'

option ipaddr ''

package 'timezone'

config section 'timezone'

option description 'UTC*UTC'

[root@barix defaults]#

7.4.2 Listing all defaults with UCI command

While the first method is easy and straightforward, the information is shown in not so optimal way. To have a
more synthesized information you can do the following:

1) Reset to factory defaults from the web Ul by going to DEFAULTS -2 Reset Factory Defaults.

BARIXAG | |/

2) Login to the device (either via serial or SSH console) and type:

[root@barix ~]# ucli show

application.main config=section
application.main config.active app=pjsua
application.audio=section
application.audio.amplifier=on
application.audio.mic linein=Iline
application.audio.volume=50
application.audio.mic_gain=0dB
application.audio.mic_boost=on
application.audio.ad gain=0dB
dropbear.SSH=section

dropbear.SSH. Port=22
dropbear.SSH.RootLogin=1
dropbear.SSH.RootPasswdAuth=1
dropbear.SSH.DisablePasswdLogins=0
dropbear.SSH. SSHRKeepAlive=300
dropbear.SSH.IdleTimeout=0
dropbear.SSH.WindowBuffer=24576
dropbear.SSH.KeepAlive=0
dropbear.SSH.DisableLocalPortFwd=1
dropbear.SSH.DisableRemotePortFwd=1
dropbear.SSH.AllowRemoteHosts=0
dropbear.FilePaths=section
dropbear.FilePaths.dropbear folder=/barix/local/app-data/dropbear
dropbear.FilePaths.rsakey=dropbear rsa host key
dropbear.FilePaths.dsskey=dropbear dsa host key
dropbear.FilePaths.banner=banner
dropbear.FilePaths.PID=/var/run/dropbear.pid
dropbear.RunCtl=section
dropbear.RunCtl.enable=1
httpd.webserver=section
httpd.webserver.port=80
network.ethO=interface
network.ethO.proto=dhcp
network.eth(.ipaddr=192.168.1.100
network.ethO.netmask=255.255.255.0
network.ethO.gateway=192.168.1.1

network.sonic ip=sonic ip

BARIXAG | |/

network.sonic ip.enabled=true

network.sonic ip.volume=50%

ntp.source=section

ntp.source.owner=system

ntp.source.serverl=1.barix.pool.ntp.org

ntp.source.server2=2.barix.pool.ntp.org

ntp.source.server3=3.barix.pool.ntp.org

pjsua.sip account=section

pjsua.sip account.registrar=change me.some sip server.com

pjsua.sip account.username=change me

pjsua.sip account.password=change me

pjsua.sip account.reg to=600

pjsua.aec=section

pjsua.aec.no_vad=y

pjsua.aec.ec tail=250

pjsua.aec.ec opt=disabled

pjsua.misc=section

pjsua.misc.autoanswer=n

pjsua.misc.cmd port=52221

pjsua.misc.capture lat=100

pjsua.misc.playback lat=100

pjsua.misc.quick dial num=change me

pjsua.misc.dtmf pattern=1234

rtc.rtc=section

rtc.rtc.enabled=true

security.
security.
security.
security.

security.

security

reset=reset
reset.enabled=true
defaults=defaults
defaults.enabled=true
update=update

.update.enabled=true

simple player.common=section

simple player.common.media type=stream

simple player.streaming=section

simple player.streaming.url=http://www.barix.com/radio.m3u

simple player.streaming.buffer ms=300

simple player.files=section

simple player.files.media folder=simple player

syslogd.remote=section

timezone

.timezone=section

BARIXAG | |/

timezone.timezone.description=UTC*UTC

[root@barix ~]#

In this way you have a quick and condensed overview of all configuration parameters, and their defaults.

BARIXAG | |/

8 Tips, Known Issues and Work in Progress

As of the date of writing this manual, the following issues are known:

8.1 “Relay” control via the RTS pin of the serial port

In IPAM-390 Dev kit it was possible to use the RTS pin of the serial port to control a LED or to drive an
external relay. This feature is available also on the IPAM-400 SDK starting from v1.02

8.2 SIP Rebroadcast application

SIP Rebroadcast application hasn’t been ported yet from the IPAM-390 Development Kit to the new IPAM-
400 SDK. For this reason, the selection of the active application on the SETTINGS page allows switching
only between the SIP client, and the Simple player applications.

8.3 Yocto generated external toolchain

The toolchain that is generated by Yocto to enable the developers develop their own applications externally,
without the need to use the Yocto environment, currently does not contain the Barix proprietary libraries-
utility _lib and player_lib, so the developers will not be able to link against them externally.

There is a work in progress preparing the recipes and the scripts these libraries to be included automatically
when the toolchain for the Barix SDK image is generated.

As a work around, the precompiled object code, and the needed include files can be copied from the Yocto
build folder to the place where the Yocto SDK tarball is being decompressed

For any other issues and questions please contact Barix Customer Support. All suggestions for improving
this manual are welcome.

BARIXAG | |/

9 Links, References and Used Document Sources

No | Document Title Document file name Document Author
Location
1 Boot and Update strategy ARM | DevWorkEnvironment_IPAM390_ | Conlfuence | JR, AB
platform v0.2.0dt
2 Combined HW/SW Combined Hardware Software IPAM-390 PK
Architecture-Concept Architecture.odt Doc repo
on ford
3 Service Restart Dependencies Restart_deps.odt IPAM-390 PK
Doc repo
on ford
4 New Platform User Space New platform user space.odt IPAM-390 PK
Doc repo
on ford

BARIXAG | |/

10 Legal Information

©2021 Barix AG, Dubendorf, Switzerland.

All rights reserved.

All information is subject to change without notice.

All mentioned trademarks belong to their respective owners and are used for reference only.

Barix, Exstreamer, Instreamer, SoniclP and IPzator are trademarks of Barix AG, Switzerland and are
registered in certain countries. For information about our devices and the latest version of this manual please
visit www.barix.com.

Barix AG
Ringstrasse 15a
8600 Dubendorf

SWITZERLAND

Phone: +41 43 4332211
Fax: +41 44 274 28 49

Internet

web: www.barix.com
email; sales@barix.com
support: support@barix.com

BARIXAG | |/

http://www.barix.com/
http://www.barix.com/
mailto:sales@barix.com
mailto:support@barix.com

